
kNL-6542
»rr9ctecl)

ANL-6542
(Corrected)

argonnt Bational laboratorg
AN INTRODUCTION TO 704 FORTRAN

by

G. S. Pawlicki

RETURN TO mBillZE FILE
TECHNICAL PUBLICATIONS

DEPARTMENT

LEGAL HOTICE

This report was prepared as an account of Government sponsored
work. neither the United States, nor the Commission, nor any
person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied,
with respect to the accuracy, completeness, or usefulness
of the information contained in this report, or that the use
of any information, apparatus, method, or process disclosed
in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for
damages resulting from the use of any information, apparatus,
method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission"
includes any employee or contractor of the Commission, or employee
of such contractor, to the extent that such employee or contractor
of the CoTmnission, or employee of such contractor prepares, dis
seminates, or provides access to, any information pursuant to his
employment or contract with the Commission, or his employment with
such contractor.

ANL-6542 (Corrected)
Mathematics and

Computers
(TID-4500, 17th Ed.)
AEC Research and

Development Report

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, I l l inois 60440

AN INTRODUCTION TO 704 FORTRAN

by

G. S. Pawlicki

Institute of Nuclear Science and Engineering

March 1962

(Correc ted Novennber 1963)

Operated by The Univers i ty of Chicago
under

Contract W-31 - l 0 9 - e n g - 3 8
with the

U. S. Atomic Energy C o m m i s s i o n

AN INTRODUCTION TO 704 FORTRAN

by

G. S. Pawlicki

ABSTRACT

It is hoped that this paper will permit the reader to
begin to program computations on the 704 computer without
referring to the Fortran Manual Only a fraction of the pos
sibilities of Fortran are described, but at all t imes an effort
has been made to indicate where only a partial expose has
been made. Many specific examples are included to i l lus
t rate the word descriptions of Fortran programming. No
information is supplied concerning operation of the 704 con
trol console and accessor ies. These functions are performed
by personnel of the Applied Mathematics Division. The main
body of the paper is devoted to Fortran programming, and
an appendix, which gives specific information concerning
procedures of the Applied Mathematics Division relative to
the use of the 704, is included.

FORTRAN is an abbreviation of the name "Formula Transla tor ."
It is called a formula t ransla tor , because formulas written almost like
ordinary algebra a re read from a hand-punched set of IBM cards by the
704 acting as a t rans la tor , and a set of cards is punched which serve to
operate the 704 as a computer. The set of hand-punched cards is called
the "Source Deck. " The source deck is translated by the computer, which
punches a translated deck of cards called the "Object Deck." The process
of preparing an object deck from the source deck is called "Compiling."
At "Object Time," that i s , when a problem is being solved, the object deck
is placed in the card reader , possibly followed by hand-punched "Data Cards "
which supply numerical data required by the program. Data can also be
read from magnetic tape, but this will not be considered

The IBM cards used in the source deck and for data have a row of
printed numbers from I to 80 which identify the 80 columns into which r ec
tangular holes can be punched. The holes, which are punched in a single
column, a re coded to represent a unique charac te r . The charac te r s are
the symbols - - • ' , () * . / as well as numerals and capital l e t t e r s . At the
top of each column is a space in which the card-punching machine also
prints the character corresponding to what has been punched. Columns 73
to 80 inclusive are not read by the computer and can therefore be punched
with identification such as numerical sequence of source ca rds and identifi
cation of cards aa data and their sequence.

To d e s c r i b e the use of co lumns I through 72, probably it is best f irst
to d i s c u s s the form of numbers which can be entered as data. Numbers can
be entered as f loating-point dec imal numbers in normal or exponential rep
resentat ion , in t egers , and octal numbers . Only dec imal and integer r e p r e s e n
tation will now be cons idered . The normal dec imal representat ion of a
number will henceforth be re ferred to as "Floating Point." An integer r e p
resented without a dec imal point will be cal led "Fixed Point." Any number
ia r e p r e s e n t e d by punched holes in a certa in s e r i e s of co lumns on the IBM
c a r d s . The number of co lumns as s igned to a specif ic number is ca l led
the Fie ld Width

The 72 colunnns avai lable for numerica l input of data can be divided
into any d e s i r e d number of f ields of any width d e s i r e d . The source deck
must contain a FORMAT statement which instructs the computer in which
way it should interpret the data card. The speci f icat ion in the FORMAT
statement for the f loating-point format is

n F w d

where n is the number of identical f ields to be read (the f irst field begins
with co lumn 1 '); F is the code letter for f loating-point representat ion; w is
the field width: and d is the number of p laces to the right of the dec imal point.

The spec i f icat ion of a f ixed-point number in a FORMAT statement is
of the fornn

n I w

where n and w are as prev ious ly defined and I i s the code le t ter for f ixed-
point representat ion In punching a data card with a number, the sign p r e
c e d e s the number . A floating-point number can be punched anywhere within
the field With a f ixed-point number the number must be at the right s ide of
the f ield; o t h e r w i s e , the blank s p a c e s at the right end of the f ield, read by
the computer as z e r o s , would alter the number by powers of ten. In both
r e p r e s e n t a t i o n s , if the numer ica l sign is m i s s i n g , the computer a s s u m e s
that the number is pos i t ive .

Only s i n g l e - l i n e format for numer ica l quantit ies will be d e s c r i b e d
The source card for a FORMAT statement might be punched as fo l lows:

Columns 1-5 A Statement Number located anywhere
in this f ield, an integral number with
out s ign.

Column 6 Blank

Column 7 onward to 72 might be punched as fo l lows:

FORMAT (3 F 6 .2 . F 5 .4 , 12, 314).

This FORMAT statement could be used to specify reading of a data
card . The data card would have 3 f ields of 6 co lumns , a field of 5 co lumns ,
a field of 2 c o l u m n s , and 3 f ie lds of 4 co lumns . The spel l ing , c o m m a s , and
parenthese s are e s s e n t i a l parts of the statement and in all other types of
s ta t ement s to be d e s c r i b e d .

If a Fortran s tatement requires more space than the co lumns from
7 to 72, a s tatement can be continued on a second card by punching column 6.
Up to 9 continuation cards can be used. With the exception of z e r o , what is
punched in column 6 is immater ia l and can even be the same on all continu
ation cards in the ent ire program, s ince the computer m e r e l y reads the
cards in the order in which they are stacked in the source deck. Only one
s tatement can be punched on a s ingle card. The statement i t se l f need not
start in co lumn 7, and any number of blanks can be inser ted anywhere in a
s ta tement . The s tatement number is an integral number without a sign and
can be located anywhere in the co lumns from 2 to 5. Statement numbers
uniquely identify s ta tements and need not be in any numerica l sequence .

Numer ica l quantit ies in FORTRAN can be numera l s or identified
with a l e t ter name A floating-point constant has a dec imal point whereas
a f ixed-point constant must not. The l i teral e x p r e s s i o n for a number can
c o n s i s t of a s e r i e s of not more than 6 c h a r a c t e r s , which can be both l e t t er s
and n u m e r a l s with certa in r e s t r i c t i o n s . The f irst character must be a
l e t t er . A f ixed-point number name must begin with l e t t er s I, J, K, L, M. or
N. and floating-point number n a m e s must not begin with these l e t t e r s . A
good rule i s to avoid the use of F as the last character to prevent poss ib le
confusion with n a m e s of functions which are d i s c u s s e d on page 6.

Both f loat ing- and f ixed-point var iab le s can be subscr ipted with up
to 3 s u b s c r i p t s . The subscr ip t s must n e c e s s a r i l y be f ixed-point numbers
without s ign. Subscr ipts cannot take on z e r o or negative va lues . The fo l
lowing e x a m p l e s comple t e ly cover l imi tat ions of naming and ar i thmet ic
operat ions for s u b s c r i p t s :

a lgebraic

aj .k. l

«a
Ci+2,m

' j .m

P i i - i

FORTRAN

A(J,K,L)

X(IA)

C (I + 2, M)

I(J,M)

P (2 * I - l)

As prev ious ly ment ioned, an equation can be punched in a forin which
l o o k s very much like ordinary a l g e b r a . The a lgebraic s y m b o l s used are -f, - ,
• , • * , / , () , and =. These s y m b o l s represent addition, subtract ion, mult ip l ica
t ion, exponent iat ion, d iv i s ion , p a r e n t h e s e s , and equal i ty . As an e x a m p l e , the
a lgebra i c e x p r e s s i o n

y = (ax' < bx + c)'

could be written as a FORTRAN Arithmetic Statement as fol lows

Y = (A*X**2 + B*X + C)**i

The mode of all t e r m s (i . e . , fixed or floating point) on the right side of the
equal s ign must be the same.' An except ion is that an exponent of a floating
point number can and should be fixed point if it is an integral number. The
mode of the left s ide need not be the same as the right s ide . When the right-
side mode is different from the l e f t - s ide mode, the statement impl i e s a c o n
v e r s i o n of the r ight - s ide quantity into the mode speci f ied by the left s ide .
In the example above, if the left side were 1. I would be equal to Y truncated,
to an integer .

In writ ing a FORTRAN ari thmet ic s tatement , the v a r i a b l e s , cons tants ,
and equal symbol can frequently be thought to have the same meaning they
have in a lgebra . Actual ly , the var iab les in FORTRAN are spec i f i cat ions of
m e m o r y locat ions rather than the numbers t h e m s e l v e s . The quantity c o m
puted by using the contents of m e m o r y locat ions speci f ied on the right of the
equal sign are to be s tored in the location specif ied on the left of the equal
s ign. Thus the equal sign real ly has the meaning "store ." This is best
i l lus trated with the s tatement

A = A + B

Algebra ica l ly this only holds true for B = 0; however , in FORTRAN the r e
su l t s of the summing of the contents of m e m o r y locat ions A and B are to be
s tored in m e m o r y locat ion A

The use of parentheses in FORTRAN is very much like their use in
a lgebra; that i s , after encountering a left parenthes i s , the computer will p e r
form the indicated a lgebra ic operat ions up to the right parenthes i s , independ
ently of any further a lgebra ic operat ions outside of the p a r e n t h e s e s . Thus,
in the prev ious s tatement for Y, the quantity in the parenthese s i s computed
and then ra i sed to the third power.

In the absence of parentheses or within parenthese s the order in which
the a lgebra ic operat ions are performed is exponentiat ion, mult ipl icat ion or
d iv i s ion , and finally addition or subtract ion. Thus BB A*B**C + X a l g e
bra ica l ly m e a n s the s ingle var iable ca l l ed BB equals (a b'̂) ^ x.

P a r e n t h e s e s are frequently n e c e s s a r y to write an ar i thmet ic s t a t e
ment proper ly , and when in doubt it i s probably wise to use them even if
they are not absolute ly n e c e s s a r y . To i l lus trate some c a s e s in which paren
t h e s e s are n e c e s s a r y , cons ider the fol lowing a lgebraic e x p r e s s i o n and their
FORTRAN representa t ion:

»(b + c) A • • (B + C)

a(b • c) A • • (B • C)

(a b)c (A * B) • • C

An expression like

. b A**B*C

could have been written with extraneous parentheses as (A**B)*C. When
ever two of the charac te rs +, -, / , *, •*, appear consecutively, it is neces
sary to separate them with parentheses . Consider the following relationship
which would not be ambiguous in algebra:

y = X • - 2 . - + 4.6 ;

this would have to be written in FORTRAN as

Y + X » (- 2 .) - (+4 .6)

An example of an expression containing a subscripted variable
might be

y = a ' + b"" Y = A(I)**2 + B(J)**M

where the parentheses a r i se because of the FORTRAN subscripting notation.

FORTRAN has 5 types of functions, of which only 3 will be considered.
These 3 a re open (or built in) functions, closed (or l ibrary) functions, and
ari thmetic statement functions. These 3 functions have the same rules for
their naming and for referring to them (calling).

The nannes of these 3 types of functions consist of 4 to 7 alphabetic
or numeric charac te r s of which the first must be alphabetic and the last is
F. A function can have one or more arguments , but the function is single-
valued. The mode of the arguments nnay be fixed or floating, and the mode
of the function value can be either fixed or floating. If the value of the
function is fixed point, the function name must begin with X. It is desirable
to name a function with a sequence of le t ters which suggest its meaning.

To i l lustrate the naming of functions, we can consider the algebraic
statement for y previously used:

y = (ax* + bx + c) '

and define an Arithmetic Statement Function. The statement to be punched
could be

YFUNF (X) = (A*X**2 + B*X + C)*»3

The name YFUNF is followed by its argument X in parentheses . YFUNF
has a value which is floating point (no X at start of name) . Its argument on
the left s ide c l e a r l y shows that the argument is floating point and, we note
that to the right s ide of the equal s ign the statement is c o r r e c t l y written in
the s a m e mode . As defined above, YFUNF has the argument X and has A,
B, and C as p a r a m e t e r s . If the left s ide of the statement had been written
YFUNF(X, A, B.C), the function would have 4 arguments

To have the argument floating and the function value fixed point, the
s ta tement would be

XYFUNF (X) = (A*X**2 + B*X + C)*»3

If we wished to have a f ixed-point argument and floating-point func
tion, we might write

YFUN2F (I) = (JA*I**2 + JB*I + JC)**3

Note that the a b s e n c e of X at the beginning of the name means that the value
of the function is floating point. The argument in parentheses is fixed point,
and to the right of the equal s ign the ar i thmet ic manipulations have the f ixed-
point var iab le I and the 3 f ixed-point coeff ic ient JA, JB. and JC to give a
f i xed-po in t -mode ar i thmet ic e x p r e s s i o n cons i s tent with the mode of the
argument of the function in parenthese s on the left side of the = sign.

The fourth poss ib i l i ty is to have fixed-point argument and fixed-point
value for the function:

XYFUN2F(I) = (JA*I**2 + JB*I + JC)**3

In FORTRAN as in ordinary a lgebra we can put in any l e t t er s or
n u m b e r s for the argunnent of a function, and so if the 4 foregoing functions
ar e defined in a program, they may later be ca l led by ar i thmet ic s ta tements
a s fo l lows:

ALPHA = 2.5 + YFUNF (7.2)

BETA = 6.3 + YFUNF (Y(K))

GAMMA = 5.75 + YFUN2F(J)

DELTA = 20.5 + Y F U N 2 F (3 l)

lOTAl = 20 + XYFUNF(2 .6)

IOTA2 = 25 + XYFUNF (Z)

LAMDAl = 31 + XYFUN2F(IT)

LAMDA2 » 436 + XYFUN2F(39)

The bui l t - in and l ibrary functions are defined within the 704 and, just as the
foregoing functions were ut i l ized in ar i thmet ic s t a t e m e n t s , so l ibrary functions
can be used by appropriately indicating the function name and its arguments .
Seven l ibrary functions with floating-point va lues and arguments are

LOGF natural log of the magnitude of the argument

SINF sine (angle in radians)

COSF cos ine (angle in radians)

E X P F exponential function

SQRTF Plus square root of the magnitude of the argument

ATANF - 7 T / 2 < arctangent in radians < Tr/2

TANHF hyperbol ic tangent

Table I, taken from the FORTRAN manual, l i s t s the built- in functions in the
704 FORTRAN, and their use is probably se l f - exp lanatory .

Type of Function

Absolute vAlue

Truncation

Rem«in daring
(•ee note below)

Chooi ing
l a r g e s t v&lue

Chooaing
•nriAlleit value

Float

Fix

Transfer
of s ign

Poal l ive
di f ference

Definition

| A r . |

Sign of Arg
t i m e s larges t
integer 5 | A r g |

Argi (mod
Arg,)

Ma> (A r | , .
A r , , . , . .)

Min (Arg),
Arg , . . .)

Floating a
fixed number

Same a i
XINTF

Sign of Argi
t i m e t 1 Arg) i

Arg | . -Min
(Arg, . Arg,)

Number
of Arga

1

1

2

1 2

xi

1

1

J

Name

ABSF

XABSr

iinr
nifTF

MDDF

XMOSF

MAXOF

MAXIF

XNAXOF

XMAXIF

KIMOF

MIlllF

Bmnr
Bmir
FLOMT

XFIXF

oICNF

XEIONF

DIMF

XDIMF

M o d e

Argument

Floating
Fixed

Floating
Floating

Floating
Fixed

Fixed
Floating
Fixed
Floating

Fixed
Floating
Fixed
Floating

Fixed

Floating

Floating
Fixed

Floating
Fixed

of

Function

Floating
Fixed

Floating
Fixed

Floating
Fixed

Floating
Floating
Fixed
Fixed

Floating
Floating
Fixed
Fixed

Floating

Fixed

Floating
Fixed

Floating
Fixed

NOTE; The function MODF (Arg, . Arg |) i s defined as Arg, •
(A r g | / A r g j) Argj , where [n] > Integral part of x.

Reproduced by p e r m i s s i o n from IBM Refarance Manual - 704 FORTRAN
P r o g r a m m i n g S y s t e m , (^ I9SS, 1959, 1961 by International Businaaa Ma
chines Corp.

In s u m m a r y with regard to the use of the 3 c l a s s e s of functions d e
s c r i b e d , the part of a s tatement which c a l l s the function c o n s i s t s of the
function name followed by a l is t of the arguments separated by c o m m a s and
in p a r e n t h e s e s , a s for ins tance ,

SOMEF (X. Y, Z(I))

Whenever a var iable i s subscr ipted , it is n e c e s s a r y to a s s i g n a suf
ficient number of m e m o r y locat ions for the array . The as s ignment of nnemory
locat ions is done with a DIMENSION statement

For ins tance , if in a problem we have the subscr ipted var iab le s A(l) ,
B(I.J). and C(I.J.K), which would be 1- , 2 - , and 3 -d imens iona l a r r a y s , r e
s p e c t i v e l y , where I takes on va lues from 1 to 5, J va lues from 1 to 4, and K
va lues from 1 to 3, then 5 m e m o r y locat ions are required for A(l) , 20 l o c a
t ions for B(I,J). and 60 locat ions for C(I.J.K). The DIMENSION statement
for this spec i f ic example would be

DIMENSION A(5), B(5,4) , C(5,4 ,3)

In the source deck, the DIMENSION statement must appear before
the f irst statennent which r e f e r s to the subscr ipted var iable .

A s imple problem will now i l lus trate the use of the s ta tements which
have been d e s c r i b e d and to introduce a few other s ta tements . The problem
wil l be to have the program read 5 data c a r d s , each of which has a s ingle
value of an angle in radians , and to have the computer evaluate the s ine ,
c o s i n e , and tangent of these a n g l e s , and form a four-co lumn tabulation c o n
s i s t ing of the angle , i ts s ine , c o s i n e , and tangent.

Co lumns I to 5 Columns 7 to 72

1 DIMENSION A(5)

2 FORMAT (FIO.5)

3 FORMAT (4F10.5)

4 READ 2, (A(I), I = 1,5,1)

5 DO 9 I = 1,5,1

6 SI = SINF (A(I))

7 CO = COSF (A(1))

8 TA = S l /CO

9 PRINT 3. A (I) . . S I , C 0 , T A

10 STOP

11 END (0 ,1 ,0 ,0 ,1)

10

The statements have all been numbered for ease of description,
though only statements 2, 3, and 9 require statennent numbers for execution
of this progrann. Statement 1 says that a "subscripted variable A, i.e..
Angle, will require 5 memory locations." Statement 2 says; "a single
floating-point number occupying a field of width 10 with 5 places to the
right of the decimal point." This statement will be used by statement 4 to
instruct the computer how to read data cards . Statement 3 says; "4 floating
point numbers , each occupying a field of width 10 with 5 places to the right
of the decimal point." This statement is used by statement 9 to instruct
the computer how to type the value of angle, sine, cosine, and tangent.
Statement 4 has not been previously explained; it can be read "Read data
cards according to the specification of statement 2 (i.e., FORMAT sta te
ment); what is being read defines the value of subscripted variable A(l)
where the index I begins with 1, and runs to 5 in steps of I ." This read
statement, at object t ime, will cause 5 data cards to be read because of
the way the index I and FORMAT were specified. The numbers read are
stored in the computer memory.

Statement 5 has not previously been explained. It can be read "do
the instructions specified by the statements following up to and including
statement 9. and then repeat this se r ies of instructions as governed by the
index I which is to take on the values 1 to 5 in unit s teps." Thus in our
case the DO statement specifies that statements 6 to 9 are to be executed
5 t imes; each time it repeats the index I is increased by unity. We can say
the DO statement has defined a loop which is to be circled 5 t imes. The
last number (1) which defines how I is incremented need not appear in
s tatements 5 and 4 because its absence implies that it is unity. Within the
DO loop the index number I is available for use in fixed-point ari thmetic
express ions . After the DO loop is satisfied, the index number I is no longer
defined.

Statements 6 and 7 are simple ar i thmetic expressions which define
floating-point variables in t e rms of the l ibrary functions SINF and COSF.
Note that in naming the variables SI and CO, it is forbidden to name them
SIN or COS, since a variable must never have a name which is that of a
defined function without the terminal F.

Statement 8 is an Arithmetic Statement that TA the tangent is the
sine divided by the cosine.

Statement 9 has not been previously explained; it can be read "Print
on the output pr inter (typewriter) according to the specifications of FORMAT
statement 3. the 4 quantities A(l), SI, CO, and TA."

If it is desirable to print out the 5A(I) values before entering the
DO loop, a PRINT Statement could be placed between statements 4 and 5:

PRINT 2, (A(I), I ^ 1,5)

11

This would print the 5 values of A(I) on 5 s u c c e s s i v e l i n e s . Note that the
PRINT statement above and the READ statement 4 have the nature of a DO
loop. Note that the l ist of var iab le s in PRINT and READ s ta tements requires
parenthese s only if the s ta tements def inean index and require looping.

Statement 10 will be executed after the DO loop is sat i s f ied . Its
effect at object t ime i s to stop the computer .

The END Statement is the phys ica l ly last card in the source deck.
It e s s e n t i a l l y s epara te s independent programs whose source decks are put
into the card reader at the same t ime during compi l ing . At the Argonne
National Laboratory, the numbers 01001 are the normal END statement s p e c
i f i cat ions . Note that the computer per forms the program in the sequence of
the source deck cards except for the change caused by s tatements such as DO.

FORTRAN has a number of different conditional branching s ta tements ,
of which only one will be cons idered . The statement

IF (A) 5,20,30

can be read "If the variable or e x p r e s s i o n A is negat ive , skip in the program
to s tatement 5; if it i s zero , skip to statement 20; and if it is pos i t ive , skip to
statement 30." Care must be e x e r c i s e d in testing floating-point e x p r e s s i o n s
for z e r o because of truncation and round-off e r r o r s which are normal ly i n
troduced into a ca lculat ion . Fixed-point ar i thmet ic , on the other hand, i s
exac t , and the skip on z e r o present s no dif f icult ies .

The unconditional branch statement is GO TO.

The following problem will s erve to i l lustrate the use of IF and GO
TO s t a t e m e n t s . The problem is to factor 5 quadratic equations by means of
the quadratic formula. The roots of the equations can be either real or c o m
plex. The block d iagram of the program i s as fo l lows .

I Wlnaulin«QulMf«r*St. OMentNn |

1 •«»* 1-
1_=^ T

|CllnilClnl»>«» 1

I

kMCaM
«I|«I«C|

1
nn L.

1 » r
t> l . <

1 ',',1 1 L -
_l I -

f «ara 1
I

1 1
|>Kar<aMl

PWHIvt Ztre

1
C M M k l M tn 1

1 oora 1
— 1 —

mm oo low 11 Itf llfM
«0»

ni-|

12

DIMENSION A(5). B{5), C(5)

5 FORMAT (3 F 10.5)

6 FORMAT (4 F 10.5)

READ 5, (A(I), B(I), C(I). I = 1,5)

DO 9 1 = 1 , 5

D = B(I)»*2 - 4.*A(I)»C(I)

IF(D)10,4,4

10 Rl = -B(I) / (2 .«A(I))

R2 = Rl

AH = SQRTF (D)/(2.«A(I))

AI2 = - A l l

GO TO 9

4 Rl = (-B(I) + SQRTF(D))/ (2 .*A(I))

R2 = (-B(I) - SQRTF(D))/(2 .»A(I))

AH = 0.

AI2 = 0.

9 WRITE OUTPUT T A P E 2, 6, R l , A l l , R2, AI2

END FILE 2

STOP

END (0 ,1 ,0 ,0 ,1)

In the foregoing p r o g r a m , the IF s tatement t e s t s if the d i scr iminant
b - 4ac i s negat ive , z e r o , or pos i t ive . If it is negat ive , the program begin
ning with s ta tement 10 is fol lowed, s ince the roots are complex . After the
complex roots are found, the CO TO statement t e l l s the computer to execute
s ta tement #9, which r e c o r d s the roots on magnet ic tapes , and then the pro
gram cont inues until the DO loop is sat i s f ied .

If the d i scr iminant is z e r o or pos i t ive , the roots are real , and the IF
s ta tement s a y s that the program for finding the real roots beings with s t a t e
ment ff4. If the d i s cr iminant was z e r o or pos i t ive , s tatement 9 fol lows i m
m e d i a t e l y after the roots have been de termined , and no GO TO statement is
n e c e s s a r y to have the next s t ep in the program be the recording of the roots .

The output s ta tement 9 has not prev ious ly been explained. It can be
read: "Write on output tape number 2, according to FORMAT statement 6,
the numbers R l , A l l , R2, AI2." The ru les for l i s t ing the output quantit ies
arc the s a m e a s for PRINT s t a t e m e n t s . Each tape unit has a t en-pos i t ion
• witch which ident i f ies the tape number, but at Argonne, tape number 1 is

13

not to be used. Since magnetic tape recording is much faster than the "On
line" printing (on the Pr in te r directly associated with the 704), the time
charges on the 704 are reduced. The recorded output tape is later read and
printed by an "Off line" pr inter for which there is no additional charge at
the Argonne computer center .

The END FILE statement marks the output tape number 2 after all
the output has been recorded. The END FILE mark on the tape is used to
stop the off-line pr inter . At the Argonne computer, the convention is not
to include a REWIND statement for the output tape, so that the computer
operator can record the output from several problems on the same reel of
tape.

Thus far. a major part of the description has been concerned with
introducing various types of statements and describing the form in which
they are written; some further mention must be made of res t r ic t ions .

Of the statements described, the FORMAT and DIMENSION sta te
ments a re called non-executable s tatements , that is, they do not cause an
operation to be performed. The first statement after a DO statement must
not be a non-executable statement. The last statement of a DO loop must
not be a statement which t ransfers control, as does GO TO. When a control
transfer statement is the last executable statement in a DO loop, the non
executable dummy statement CONTINUE is made the last statement of the
DO loop.

The successive statements between the DO statement and the last
statement of the DO loop define the range of the loop. Frequently, other
DO statements occur within a DO loop. When this occurs , the range of the
ear l ie r DO statement encountered must extend up to or beyond the range
of any DO loops defined within the range of the first DO loop. This says
that DO statements must be nested; there cannot be just a partial overlap
of ranges of DO loops.

Transfer into a DO loop from statements outside of the range of a
DO loop can only be made to the DO statement itself, and not to any other
statement in the range of the DO loop. With a single DO loop, t ransfers
a re permit ted to s tatements within the range of the loop. If there are nested
DO statements in a program, any t ransfers to the inner DO statements can
only be to the DO statements itself so as not to violate the rule in regard to
t ransfer r ing stated above. The calling of any function or subroutine involves
a t ransfer out and then back into a program; this sort of t ransfer is permitted
within the range of a DO loop provided the subroutine returns to the same
par t of the loop and that the subroutine does not a l ter the value of indices.
It should also be emphasized that no statement within a DO loop must rede
fine the indices. It should be noted that all res t r ic t ions apply to entering
DO loops and not to exiting.

14

Some mention should be made of size limitations of numbers. A
fixed-point number must be less than or equal to 2". A floating-point
number can be between 10 " and 10"" or zero; however, the computer
carries only 6 significant digits.'.' A greater number of significant digits
on a data card are not read.

The maximum length of a FORTRAN statement is 660 characters or
blanks, and requires 9 continue cards. The maximum number of characters
and blanks which can be printed on a single line is 120. The length of a
single tape record on output tape is also 120 characters and blanks. A tape
record is printed off-line as a single line.

Whenever an Arithmetic Statement Function is defined, it must pre
cede the first executable statement in the program.

It is frequently convenient to include comment card in the source
deck. Comment cards are punched with a C in column #1, and any com
ments such as program name, date, and program author are punched in
columns 2 through 80 on any number of cards in succession. Comment
cards at the beginning are a convenient way for the operator to identify the
program being compiled, since the comment cards and all the statement
cards are printed during compiling. Comment cards produce no effect
upon the object deck.

In writing FORTRAN, care must be taken not to confuse the letter O
with the numeral zero, which are punched differently on a card. The letter
O should be written as ^. The letter 1 and the number I can also cause
trouble although this is due more to careless writing. The printing on a
punched card is different for I and 1, so no confusion results.

Acknowledgments

The author appreciates the suggestions and comments of numerous
people in the Applied Mathematics and International Institute Divisions. The
author is particularly grateful to Mr. Burton Garbow of the Applied Mathe
matics Division for his detailed review of the original manuscript. Suggested
rephrasing of certain parts of the text which might be more satisfying to an
experienced 704 user have not been incorporated in the final form of the
paper in the hope that its form is more comprehensible to a novice.

15

APPENDIX

Some additional information on procedures of the Argonne computer
center wil l now be given. This wil l be helpful in carrying through a p r o g r a m
to the final solut ion of the problem.

The program is m o s t conveniently writ ten on the form shown in
Figure I. Data are wri t ten on the form shown in Figure 2. The forms are
avai lable in the s tat ionery sec t ion of the Building 203 s tockroom.
Room R129 on the main f loor.

After preparing the writ ten program, the source cards can be
punched in Room C055 in the basement of Building 203. After an initial
keypunch prac t i ce period, source cards should be punched by the g i r l s
in Room C055. Arrangements for card punching should be made with
Lead Data Transcr ip t ion Operator, Room C055, Extension 2876. Other
card punches are located in var ious other d iv i s ions of the Laboratory, in
cluding one in Building 25A, Extension 2294. General ly , at each c a r d -
punching machine a supply of blank IBM cards is avai lable . Figure 3 shows
a sample s o u r c e card and a data card.

The IBM 704 computer is currently instal led in Room DOOl in the
b a s e m e n t of Building 203. In the same room is a 1401 computer which is
p r o g r a m m e d to check cards of the source deck. The checking of a source
deck is r e f erred to as " P r e - p r o c e s s i n g . " An applied mathemat i c s m e m o
is avai lable which includes a l i s t of e r r o r s checked by the p r e p r o c e s s o r
and the code name by which they are identified. There is no additional
t ime charge for p r e p r o c e s s i n g and, s ince it great ly i n c r e a s e s the proba
bility that the program wil l work on the 704, all source decks should be
p r e p r o c e s s e d . The 1401 is scheduled for p r e p r o c e s s i n g from 1030 to
1115 and from 1500 to 1545; if requested , the 1401 operator wil l check
the r e s u l t s and, if it appears that the program can be compi led , wil l place
the deck in the next compi l ing batch. Compiling is a c c o m p l i s h e d from
1200 to 1300 (if requested) during the day; a l s o , compil ing is done at night
for pickup the next morning .

An appl icat ion for authorizat ion to obtain use of the 704 must be
f i led with the Applied Mathemat ics Div is ion in the d iv i s ion off ice . Room Bl 53,
Building 203, by m e a n s of form AMD 6. AMD then e s t a b l i s h e s a job number
and job t ime cards are sent to the computer room. Argonne National Labo
ratory e m p l o y e e s should become acquainted with the policy of their Divis ion
in re la t ion to authorizat ion of computer use . Use of the 704 by p e r s o n s not
e m p l o y e d by Argonne is authorized by the Div i s ion sponsor ing the person .

The spec i f ic t ime at which the computer is to be used is scheduled
at the computer roonn or by cal l ing the scheduler at Extens ion 2877. Re
q u e s t s for t ime of 15 min or l e s s from 0830 to 1200 are made after 1200 of

16

the preceding day; r e q u e s t s for t ime from 1300 to 1600 are made prior to
1200 of that day. The schedule is writ ten on the blackboard in the computer
room. T i m e on the 704 can be scheduled from 1700-2400 for per iods of
t ime g r e a t e r than 15 min.

Whenever t ime is scheduled, a t ime card and a set of instruct ions
for the computer operator must be provided. Form AMD 5 is used for the
ins truct ions . The n e c e s s a r y information on the form is the following:

(A) The nature of the run, that i s , whether it is compi l ing, compu
tation, or both.

(B) Does the program have on- l ine printing or punching?

(C) Does it have output on magnet ic tape and, if so , which tape
swi tch number sett ing should be made? It should be spec i f ied
if a s ingle or double copy should be produced by the off- l ine
pr inter . The s ingle and double copy are re ferred to as I or
2 part paper, re spec t ive ly . If the tape is to be saved, what
identif ication should it have on its label? (Label information
should include the name of the job, the name of the person who
reques ted that the tape be saved, and the date after which the
tape can be reused .) If no labeling information is provided,
it i s a s s u m e d that the tape need not be saved.

(D) D o e s the program use any data cards?

(E) What are the s e n s e switch se t t ings? (This introduction has
not c o v e r e d s e n s e s w i t c h e s , so one m e r e l y says they are all
up.)

(F) What is e s t i m a t e d duration of the run? The operator should
be informed when to stop a run, part icularly if the program
is new, to avoid wast ing t ime on a program which may m a l
function. For p r o g r a m s which have been prev ious ly run
s u c c e s s f u l l y , the operator can be told to allow the program
to run to complet ion and the t ime required can be predicted
with reasonable accuracy .

After compi l ing , the source and object decks and the printed shee t s
produced by the c o m p i l e r are on distr ibut ion s h e l v e s in D-OOl where they
can be picked up.

The off - l ine printing from magnet ic tapes is routinely done during
the day within an hour and a half of the complet ion of the computer run.
The printed output can be picked up from the s h e l v e s adjacent to the
1401 computer .

r.*. roe

STATCIltNT

1 S

1
1

1
1
1

1

. 1

— t
—1

1

1

-1

—1
1
1

—1
1

A M C y i l I T . M l

1
3

1
6

PROBLEM

7
FORTRAN

DATE

STATEMENT

PACE OF

77

PROGRAMMER

loCJfTiricaTiOM

73 80

J

J

Figure 1

IBM Fortran Programming Form (reproduced by permission of International Business Machines Corporation)

704 I M P U T D * t *

FOIM I

PROC S M I PROBLCH

1 [1

1 l] 4 i < T t « 0 1 1 3 4 S t ' l t | o l >] 4 S « 7 i «

• • 1 ' > t 1 1 1 1 1

1 1 i 1 i 1 1 1-

1 1 1 I I t 1 1

1 1 1 1 1) 1 1

1 1 1 1 1 1 .1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

..J 1 1 1 1 1 1 1

I I I I .

- ^ . I . . 1 . ,

. 1 1 1 1 i • 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

I ' l l 1 1

1 1 • • I I 1 • • • 1

1 1 1 1 1

' 1 I 1 1

1 I 1 1 1 I 1 1 I 1 1

1 I ' ' I I

1 1 i 1 i 1 1 1 1 1 1

1 1 1 1

I I I I

• I I I

1 1 1 1

I I I I

.^ 1 1 1 I 1 1 i 1 1 1

1 1 1 1 1 1 i 1 1 1 1

I 1 1 1 1 I I 1 i 1 1

1 1 1 1

• i l l

ORIGINATOR

1

a i > 3 4 S < 7 i <

4

a i } 3 4 S (7 l f

1

1 1

1 1 1 1 1 1 i 1

I I
1

1 i

1] 3 4 S 4 7 1 * 0 l] 3 4 3 « 7 l 9 { o i 2 3 4 S > 7 i «

u
O I 2 3 4 S < 7 («

3

OATC

s

0 1 7] 4 S ' l 7 l t

p*ce Of

4 | 7

0 1 7 3 4 5 4 7 1 t { o i } 3 4 S < 7 l «

1 1 I 1 1 i 1 i 1 1 1

' ' • F 1 1

1 1 1 1 1 1 1 1 1 1 1

0 1 7 3 4 S 4 7 I 9

4

0 l } 3 4 S t 7 l «

$

I 1 1 1

O I 2 3 4 S t 7 l «

t

•
0

J—1—1—1—* 1 1 <

I I I I '

•

0 1 3 3 4 S 6 7 I « | 0 I.
> • « * o

Figure Z

I I I I 4 »
I I I I F O R T R A N S T A T E M E N T

iiti|iMn|iiiiiiiiiiiiiiiMiMMtnmiMniinTiTn
i < i n |

m t t i

I ' l l J

4.444

SiSSi

(' i l l
I

l i p

44

m i l l
.1
1 1 1 i l I

m i t
• I I I •

i i s

l i t

I i n i n i n i | n M i l

i i i i i l i i i i i m i t i

n n n m i n n i i
| 4 | 4 I 4 4 4 4 4 4 | 4 | 4 4 4

S S | | } S S | S S i | S S S S

I l l l 4 l | l l l (t l l (l

I l l l l l l i l l l | l | l 4 l

n i l

i i i i i i i i

I I I M I I

1 2 2 1 1 1 1

n i i i i)

4 4 4 4 4 4 4

K K t l t

I I I M ?;

i i i i i i i

1 1 1 1 1 1 1 1 1 1 I I 1 1 1 1 1 I I 1 1 1 1 I I 1 1 1 1 1 1 1 1 1 I I I

2 2 I I > > 2 1 2 2 2 > 2 I > 2 I 2 2 2 > I > 2 > > I M > > 2 I > I i ; i 2 I l I I I } I I

i D i i i i i i i i n n i i i i i i i i J i i i i i i i m i i i i i J i i i n n
4) 4 4 4 4 4 4 4 4

•acflt i#i(«ti««

I I I I I I I I

t i (t l t l l l (t l ((t (t l l 4 i 4 l i l l l i (i (i l l t | | | (

M M M 1) 1 7 1)) I I n n n ? ; i ; M ; ; 7 n n i i M i

I I M I 4 l l l l 4 l 4 l l l l l i l 4 I I I M I i l l 4 I I I I I I I I M I 4 4 4 l i

« « s s s ! i ! > n i M i i n n t M i i t i i i « « m i i i « i

l l l l l i i l

11111111

u m i i i
ti itoMaanaaa

z 1 . 0 5 DATfS!

M i M l i i i i i i r i i i

I i i i i i i i i i i i i i i i

• - M l | l i l l i « l l l

liiiiiiiiiii

••••••••IIIIIII

l l l l i i S I ^ I ^ I I K

• • • • • • • • • • • • I I I

• • • . • • • • • • • • • • • l

• • I J I I I I I M t O I I

• • • • • • • I M i l l 11

I t i l l M l l l ^ l i ^ l

• • • • • • • l l l l l ^ ^ l

• • I I I I •;• 11

I I I I I I i l l

111 t i l l 11
• « • • , • . i n f t p M -

l l l l l l ' l O l
1

• • •;• ••!••!
M l l l O t t I

• • • • o s o a i

• • • ' • • l l l ^ l

• i i i i i | g g i

• • • • • • I I I I

• • • • • • ' • 1 1

--I h -
• • • • • • ! • • (

1 1 • • • • • • M • • ! • 1 0 0 0 0 0 0 0 0 1 • : • • • ! • • • ! • • • . • • l . l • • • 11 :1 • • ! ! |

• • • • • i I • • { • • 0 g 0 0 0 0 0 0 0 0 0 0 • 1 1 ({ i I oil 1 1 1 4 1 i I i i • g 1 1 l j

0 • 1 1 • • • I r o g g 0 D g 0 0 0 0 0 0 0 0 g g g g g g ô g g g g g I g e 0 0 0 0 g g g' |

i.g g gi

IM g g,i

aj.- • » • ' . ' .) u cv« . ' M WWI I WUMJU

g g g g g g 0 0 o.g g go g g 0 0 0 0 0 0 0 g g :• g g

g • 0 0 0 0 0 0 0 0 oi

g g o j o o o t o o o o o o g g g g g j I | |

0 g g g g g g g tM I.g g g 0 g g g 0 g g g • : • I g • • • i t • • • • • : • • • • • • : • • • !

o o o o o g g g o o o o o g o c o o g o o o g o o o o o o o o o g o o g g g o g t o o j o '

0 0 0 9 g 0 g g 0:0 g g 0 g 0 0 0 0 0 0 0 0 g 0 0 0 0

o o o o o o o o 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 g g
.1 .̂ « .1 v ,; .. r KV • » • " v . i u n.m .' • n MI> u IIM

0 0 O'O 0 0 0 0 0 3 0 0 0 0 0 0 0 o |

o g i | g g g i o g g g g o t o ^ ^ ^

0 0 0 0 0 0 0 0 o't 0 0:0 0 0 0 D 0 0 0 0 0 0 0 0 0 o!o 0 0 0 0 0 0 0 0 1 g g 0 0 0 0 g •

i ' i
goooooito,geg:o 0 0 0 0 0 0 0 0 0 0 4 0 0 00 0 0,0 0000 e o o g g g g g g t

oooooooo oi«0 00 0 00 0000000000 o|oOO;0 00000000000001

• ••OOOOOO'lOO'OO 0 0 0000000000 oio 0 00 00000000000000

Sample FORTRAN Statemi
card. Note difference ii
printing of capital letter I
and the numeral one. The
letter O and zero can only
distinguished by the punch
holes.

'xiff:

Sample data card. Note that
a different type of card is
normally used for the source
cards and data cards

Figure 3

IBM Forms 888157 and 893099 (reproduced by permission of International Business Machines Corporation).

